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F I B E R  B U N D L E S  W I T H  L I Q U I D  E V A P O R A T I O N  O N  T H E I R  

S U R F A C E S  

V. I. Eliseev and Yu. P. Sovit UDC 536.24:532,72 

In a number of technological processes for the spinning and processing of synthetic fibers, heat and mass transfer are 

accompanied by the liberation of gas from the surface of the fibers. As a rule, it is induced by chemical reactions such as 
combustion, by decomposition of the polymer with the precipitation of low-molecular compounds, or by liquid evaporation. 
In all these cases heat and mass transfer are influenced by the heat of reaction or the heat of phase transition. Heat transfer 

with phase transition of the liquid is an important process in the drying of fibrous materials and fiber bundles. 

Of all the many and varied existing technological operations, the drying of moving fiber bundles can be regarded in 
isolated cases as a certain peripheral link in the greater technological chain, but it is still of practical interest. It can involve 

such stages as extraction of the fiber bundle from the settling tank after wet spinning and the motion of the bundles after 
lubrication. 

The drying of moving fiber bundles plays an equally major role in dry spinning, where the polymer solvent is 

evaporated from the fiber surfaces. Since the fiber contains considerably more solvent than polymer in the initial stage, the 
evaporation of the liquid takes place qualitatively in accordance with the laws governing the drying of moisture-impregnated 
porous materials [1-3]. This type of process is characterized by several stages, the first of which is accompanied by variation 

of the fiber temperature and rapid evaporation, while vigorous gas liberation is maintained in the second stage, with equal heat 
fluxes proceeding from the medium and entering into phase transition, so that the temperature of the filaments remains 

practically constant. Cross-linking of the polymer and the development of fiber properties take place simultaneously with the 
removal of the solvent. In the light of this, the development of mathematical models of combined heat and mass transfer during 

phase transitions in moving fiber bundles and the application of those models in computations of real spinning setups pose a 
timely problem. 

1. STATEMENT OF THE PROBLEM 

We assume that each fiber in the bundle is coated with a thin film of water, whose thickness is specified. We consider 
the accompanying evaporation to be an equilibrium process, i.e., the saturation concentration in the gas near the surface of the 

film is related one-to-one to the pressure and temperature in this zone. We also assume that the velocity of the film and the 
temperature of the liquid are equal to the velocity and temperature of the fiber. The equations of motion and heat transfer of 
a bundle of moving fibers or filaments have been derived [4] on the basis of a filtration flow model and boundary-layer model. 

This system of equations has been augmented [5] with diffusion equations, but mass and heat transfer are treated separately 

in the cited paper. In combined heat- and mass-transfer studies these equations must be further elaborated with terms to account 
for heat transfer as a result of the diffusion motion of the components. The majority of gas mixtures comply approximately 

with the condition Le = Pr/Sc = DCp/X ~ 1 (Le is the Lewis--Semenov number, Pr is the Prandtl number, and Sc is the 
Schmidt number), and we shall assume that this condition holds exactly in the equations for our case. Since the heat and mass 

fluxes are given by the following functional relations for a two-component without regard for thermal and pressure diffusion 
[6, 7]: 
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the basic equations of motion and heat and mass transfer for an incompressible medium in bundles of  rods of constant diameter 
have the form 
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Here x, r is the coordinate system; u and v are the components of the filtration velocity; h is the enthalpy; h i is the enthalpy 

of the ith component; p is the density; p is the pressure; e is the porosity of the bundle; Cp is the specific heat at constant 

pressure;/z is the dynamic viscosity coefficient; X is the thermal conductivity; c i is the mass concentration of the ith component; 

V i is the velocity of molecules of the ith component; v is the real "bulk" velocity (mass flow rate averaged over the flow cross 

section); D is the diffusion coefficient. The subscript 1 associates the parameters with the vapor, and the subscript 2 associates 

them with air. The sources G, R x, Q, and K determine the interaction of the system of moving fibers with the surrounding 

medium. According to [5], they can be represented as follows in connection with Eq. (1.1): 

2.rtR 2 ~ R  
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(1.3) 

where R B is the radius of the fiber plus the film; Rzx is the radius of the cell; U B is the velocity of  the fiber; v B is the 

hydrodynamic flow velocity from the film surface during evaporation; h 8 and ClB are the enthalpy of  the mixture and the 

saturated vapor concentration on the film surface; and %; %; and gB are the frictional stress and the thermal and diffusion 

fluxes on the film surface. The expression for Q differs from the one obtained in [5] in that the enthalpy rather than the 

temperature of  the mixture is used in calculating the energy transfer in a two-component medium. In this case the solution 

for the enthalpy of  the gas moving in the cell with the liberation of gas from the fiber surface has the following form by 

analogy with Eq. (2.4) in [5]: 

h = h + (h  a - h ) f o ( r  , ctc). (1.4) 

Differentiating (1.4) with respect to the radius at r = R 8, according to [7], we find 
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Allowing for the fact that qB = --k0T/0rlr=R,, we have 

2 

q'= 

whereupon we finally obtain 

2~R (p ~ Oh ) 

P r=Rl~ 

i.e., the source in the energy equation does not depend explicitly on the enthalpy or the mass fluxes of the components of the 

mixture. The procedure for determining ~'a, gB, and Oh/igrtR a is the same as that described in [5] and is omitted here. The 
hydrodynamic velocity during evaporation is determined from the relation [1] 

D 0c l 
% = I - cl, Or [,-R (1.5) 

The saturation concentration clB on the surface of the evaporating liquid, subject to the condition that the process is in 

equilibrium, is determined from relations between the temperature and pressure of the saturated vapor. For fibers of radius 
0.01 mm or more we can disregard OL/R B in comparison with atmospheric pressure and assume that the vapor pressure over 

the cylindrical liquid film is equal to the pressure over a fiat surface (% is the coefficient of surface temperature). 

We augment the system (1.2)-(1.5) with the heat-transfer equation of the elementary fiber; in the approximation of 

a thermally slender body with allowance for the heat of phase transition this equation has the form 

dT 
�9 ~RZsPzCpzO's ~ ---- -- 2~Rs(qs + p ~ H ) ,  (1.6) 

where p~c.p~ = ~/pseps + (1 - fl)PLCpL , /~ = R,2/R 2, R ,  is the radius of the bare (without the film) fiber; H is the specific 

heat of vaporization; Pa and Cpa are the density and specific heat of the polymer, PL and CpL are the density and specific heat 
of the liquid. 

Equations (1.2)-(1.6) with the appropriate imtial and boundary conditions describe conjugate heat and mass transfer 

in a bundle of moving fibers with liquid evaporating from their surfaces. However, one more assumption is made in our 
calculations. Allowing for the fact that the specific heat Cp of the mixture varies as a result of the slight variation of the 

concentrations, we assume that h = CpT. This enables us to change from enthalpy to temperature in the heat-transfer equation. 

The specific temperature dependences of the diffusion coefficient, pressure, saturated vapor concentration, and heat of 
vaporization determine the form of the evaporating liquid. 

As an example, we consider the equilibrium water evaporation process. According to [8], the saturated vapor pressure 

approximation in the temperature range from 0 ~ to 320~ is written for this process in the form 
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(a_ 1 = -7 .8215,  a o = 82.8657, a 1 = 10.2100, and a 2 = -11.4878).  
The saturated vapor concentration as a function of the pressure is determined from the relation [9] 

(1.7) 

cu, = Mxy [MzY + M2(1 -- y)l -l,  y = pt /I'l, (1.8) 

where M 1 and M 2 are the molar masses of the vapor and air, respectively, and II is the pressure of  the air--vapor mixture 
(If = p). 

The diffusion coefficient of water vapor in air has the form [8] 

D = Oo(T/To)X'Spo/p (1.9) 

(D O = 0.216 m2/s at Po = 1-01"105 Pa and T O = 273 K). 

Tabulated data [10] are used to approximate the temperature dependence of the dynamic viscosity of water vapor. The 

dynamic viscosity of air is determined from Sutherland's formula [7]. The viscosity of the mixture depends on the vapor 

viscosity/~1, the air viscosity/~2, and the concentrations of the components and is determined from the equation 

.uffx /~2(1 - cx) 
= + , (1.10) 

/~ c t + ( l  - c x ~  u l - c  I +cx~2x 

where ~b12 and r are correction factors, which depend on the molecular weights and viscosities of  the components [8]. 

The specific heat of vaporization of water is calculated from the approximation relation [9] 

H = 103exp( - 0,000989T *C + 7,8213). (1.11) 

The system consisting of Eqs. (1.2)-(1.11) must be augmented with transport equations in the exterior region 

surrounding the fiber bundle. They canbe obtained from (1.2) by setting e = 1, G = R x = Q = K = 0. Interaction between 

the flow regions is taken into account by matching conditions at the boundary of the bundle for the velocities, temperatures, 
concentrations, tangential stresses, and heat and mass fluxes. 
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2. RESULTS OF CALCULATIONS 

We investigate model heat- and mass-transfer problems for a bundle of fibers in an open medium and in a pot 

(blowdown line); these models correspond to the principal setups used for the spinning of complex fibers. We assume that the 

bundle has a radius R b = 0.025 m and is made up of fibers with an initial radius RB0 = 0.7-10 -4 m coated with a water film 

of thickness 0.1R~0. The fibers move with a velocity U B = 0.35 m/s and have an initial temperature TB0 = 85~ The 

ambient temperature is To* = 120~ and the water vapor concentration is c I o  . = 0.025; here Pr = 0.7 and Sc = 0.7. The 

following boundary conditions are stipulated at infinity for the system of equations (1.2) in the open-air spinning model: 

u(oo) = 0, TB(oo) = To., Cl(OO) = Clo*. 
Figures 1 and 2 show the numerically determined distributions of the temperatures of  the fibers T s (Fig. 1, solid 

curves) and the gas T (Fig. I, dashed curves), the saturated concentrations CZB (Fig. 2, solid curves), and the water vapor 

concentrations c 1 (Fig. 2, dashed curves) at the center of the bundle (curves s) and on its surface (curves p). The calculations 

refer to two bundles with N = 20 and 60 fibers (curves 1 and 2, respectively). The values of the thermophysical parameters 

of the polymer corresponded to polyethylene terephthalate and are taken from [1 I]. It follows from these distributions that 

the temperature of the fibers drops during the very rapid evaporation in the initial period, and then it changes more slowly in 

accordance with the local heat- and mass-transfer conditions. A slight temperature increase is observed on the part of  the outer 

filaments in connection with the entry of hot gas from the outside into the bundle and a simultaneous decrease in the 

evaporation rate due to the decrease in the difference between ClB and c I. The inner filaments are characterized by a continuing 

gradual drop in temperature with a simultaneous decrease in the evaporation rate. The temperatures of the gas vary 

monotonically as they approach the corresponding fiber temperatures. Figure 2 shows the distributions of the saturation 

concentrations cls corresponding to the fiber temperatures Ts, along with the distributions of the concentrations in the vapor 

and the gas. Here the vapor concentration is observed to tend uniformly to the saturation level, and the value of c 1 becomes 

essentially equal to ClB in the interior regions of the bundle. Cooling of the outer filaments causes the corresponding saturation 

concentrations to drop very abruptly, but then they settle into certain stabilized values. The subsequent variation of  these 

parameters is not shown, because the water film has evaporated completely from the fibers. After the completion of 

evaporation the temperatures of  the fiber surfaces are observed to rise sharply to the corresponding temperatures of  the gas; 

this phenomenon is particularly visible for N = 20 (Fig. I). It is followed downstream by an interval in which the temperature 

of the gas continues to drop as a result of heat being withdrawn by the inner layers of the bundle, and the fibers begin to cool. 

These distributions clearly exhibit the influence of the density of the bundle on heat and mass transfer. For N = 60 

the heat-transfer interval up to complete evaporation of the film from the outer filaments is much longer, and the 

postevaporation heating of  the fibers is significantly weaker. 

Curves representing the temperatures and concentrations of vapor in a bundle moving through a blowdown line are 
shown in Figs. 3 and 4. The boundary conditions are stipulated as follows: 

u(R)  = O, T(R ) = ~ ,  Oc/Or[,.% = 0 

(R r is the radius of  the tube). The parameters of  the blowdown line are R r = 0.075 m and T w = 120~ and the mass flow 

of injected air is G O = 0.025 m3/s. All other parameters of  the problem and notation in Figs. 3 and 4 are the same as in the 

previous heat-transfer model. Since almost-uniform thickness profiles of the velocities, temperatures, and concentrations are 

observed in the bundle for the indicated parameters of the problem, Figs. 3 and 4 show only the values corresponding to the 

602 



central regions of the bundle. A comparison of the temperature and concentration distributions in Figs. 1 and 2 with those in 

Figs. 3 and 4 reveals that they differ only slightly. However, the following distinctions should be noted: After a drop in the 

initial interval the saturation concentration c18 profiles tend almost immediately to constant values corresponding to the fiber 

temperatures, and the distributions of the vapor and air concentrations approach ClB linearly. Prior to complete evaporation 

of the water film the fiber temperatures depend on the number of filaments in the bundle. After the completion of evaporation, 

as in the open-air bundle, sudden heating of the fibers is observed, and their temperatures approach the air temperature; 

however, unlike the open-air case, where complete evaporation of the films takes place only in a shallow surface zone of the 

bundle, water evaporation from the filaments in a blowdown line is observed throughout the entire volume of the bundle. 

The dot-dash curves in Fig. 4 represent the distributions of the dimensionless evaporation rates et = VBRBh, for N = 

20 and N = 60, which illustrate the influence of the bundle packing density on the fiber drying process. 

To determine the quantitative differences between the heat- and mass-transfer laws in bundles of moving filaments "and 

in solitary fibers, we perform calculations of the drying process in the dry spinning of fibers from polyvinyl alcohol using a 

set of data corresponding to [3]: initial fiber velocity 0.7 m/s; initial radius 0.5-10 -4 m; air temperature 120~ initial fiber 

temperature 85~ number of fibers N = 10. The thermophysical parameters of the polymer are taken from [12]. The results 

of the calculations are shown in Fig. 5. For solitary fibers we consider the evaporation of water in laminar and turbulent flow, 

assuming similarity of the heat- and mass-transfer processes. The following expression is used as a dimensionless relation for 

the Nusselt number in turbulent flow [2]: 

Nu = 0,42Re ~ 

where Nu = ~aDB/X, Re D = UaDB/V, c~ B is the heat-transfer coefficient, and D B is the fiber diameter. The resulting 

distributions of the temperature T B (solid curves) and moisture content x (dashed curves) of the fiber are represented by curves 

2 in Fig. 5; curves 1 give the experimental data. The agreement of these distributions is perfectly satisfactory, and the fiber 

temperatures practically coincide in the scale of the figure. Curves 3 represent the results of calculations for laminar flow with 

the dimensionless heat-transfer number specified in the form [2] 

Nu = 4,3(a + a 2 - a 3) (a = [ ln,~/41 -t, ~ = 8 [ x / ( R % D ) l ) -  

The temperaturedifference between laminar and turbulent flow is not very great and actually occurs only in the initial 

interval. The distribution of the moisture content in this case differs appreciably from the experimental results because of the 

decreases in the heat-transfer and evaporation rates. 

The results of heat- and mass-transfer calculations for a fiber bundle are represented by curves 4 (motion in a 

blowdown line) and 5 (open-air bundle, surface filaments). The radius of the bundle is 0.025 m, and the average velocity of 

the gas in the line is Uav = 4U B. The temperatures of the fibers moving in the blowdown line and in open air are somewhat 

lower than the experimental data. The distributions of the moisture content for these models differ considerably from those 

obtained for the open-air bundle. The disagreement is attributable to the fact that the rate of evaporation of liquid on the fibers 

is significantly decreased by dynamical, thermal, and diffusion interaction of the fibers and the formation of a boundary layer 

on the bundle. The bundle in the blowdown line is characterized by forced blowing of the filaments. Its intensity depends 

on the injected air rate and can fluctuate over a wide range, determining the rate of change of the moisture content. In the 

given situation the moisture-content curve is situated between the distributions for solitary fibers in the turbulent and laminar 

regimes. A decrease in Uav brings the calculated results closer to the moisture-content distribution for a solitary fiber in 

laminar flow. The reported data exhibit the principal laws of drying of fiber bundles in dry spinning and show that the 

postulated mathematical model can be used to analyze heat- and mass-transfer processes in real technological fiber producton 

setups. 
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